Journal of Organometallic Chemistry, 101 (1975) 209–214 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

THE CRYSTAL AND MOLECULAR STRUCTURE OF (π -METHYL BENZOATE)(TRIPHENYLPHOSPHINE)CHROMIUM DICARBONYL

V.G. ANDRIANOV, Yu.T STRUCHKOV*, N.K. BARANETZKAYA, V.N. SETKINA and D.N. KURSANOV

Institute of Organo-Element Compounds, Academy of Sciences, Vavilova 28, Moscow (U.S.S.R.)

(Received May 12th, 1975)

Summary

The crystal and molecular structure of the title compound was determined by the direct method on the basis of 2192 reflections measured by an automatic diffractometer. Least-squares anisotropic (isotropic for hydrogens) refinement led to R = 0.040. The bond lengths and angles are usual. The Cr(CO)₂ -PPh₃ fragment is in an eclipsed orientation relative to the almost planar η^6 methyl benzoate ligand. The molecule has no specific conformational features to explain its unusually fast isotopic hydrogen exchange.

Introduction

Earlier we showed [1] that methyl and methoxyl substituents in an aromatic ligand in π -arenechromium complexes do not affect the rate of isotopic hydrogen exchange (IHE) to any considerable degree. Therefore it was surprising that the carbomethoxyl group in (η^6 -C₆H₅COOMe)Cr(CO)₂PPh₃ (I) gave rise to the ten-fold increase of the IHE rate in CF₃COOH compared with that of (η^6 -C₆H₆)Cr(CO)₂PPh₃ (the rate constants at 27.7°C are (4.7 ± 0.4) \times 10⁻⁶ and (5.0 ± 0.5) \times 10⁻⁷ s⁻¹ respectively [2]). At the same time the carbomethoxyl substituent in benzene derivatives is known to decrease the rate of electrophilic substitution.

In attempt to explain this anomaly of complex I we considered it useful to carry out its X-ray structural determination.

Experiment and solving the structure

Red, needle-shaped crystals of I are monoclinic. The unit cell parameters were determined by least-squares on the basis of 12 reflections with large θ -values measured in the 4-circle automatic Hilger—Watts diffractometer:

Q

a=10.182(5), b=18.884(6), c=13.250(5) Å; $\gamma=108.64(2)^\circ; V=2414$ ų; mol. wt. = 506.5 (C_{28}H_{23}PO_4Cr); $d_{\rm m}=1.40, d_{\rm c}=1.40~{\rm g~cm^{-3}}; Z=4;$ space group $P2_1/n.$

Intensities of ca. 2400 reflections were measured by the same diffractometer ($\lambda(Cu-K_{\alpha})$, graphite monochromator, $\theta/2\theta$ scan, ordinate analysis [3]). Absorption was neglected, and for subsequent calculations 2192 reflections with $F^2 \ge 3\sigma(F^2)$ were used.

The structure was solved by the direct method and 24 (out of 34) nonhydrogen atoms were revealed by the *E*-synthesis. Positions of 10 more atoms were determined by the difference synthesis (Cr and P atoms being subtracted). The isotropic refinement led to R = 0.108. At this stage the next difference synthesis with subtraction of non-hydrogen atoms allowed all 23 hydrogens to be localized. The refinement of their coordinates lowered the *R*-factor to 0.092. Finally 5 cycles of block-diagonal anisotropic (isotropic for hydrogen atoms) refinement gave the final values R = 0.040 and $R_w = 0.036$. Atomic coordinates and temperature factors are given in Tables 1 and 2 respectively.

Molecular geometry and discussion of results

The configuration of the molecule I, the main bond lengths and angles are shown in the Fig. 1. As in related (η^6 -arene)Cr(CO)₃ complexes the coordination of chromium is octahedral with angles P-Cr-C(O) and (O)C-Cr-C(O) close to the ideal value of 90°. Thus the substitution of one CO group by the bulky PPh₃ ligand does not cause any appreciable distortion of the coordination polyhedron, i.e., does not give rise to considerable overcrowding.

The mutual orientation of the methyl benzoate ligand and the $Cr(CO)_2$ -PPh₃ fragment is shown in the Fig. 2 (a projection on the coordinated benzene ring plane). Evidently these molecular parts are in an "eclipsed" conformation. A similar configuration is found in all related complexes where arene ligands have electronegative substituents [4]. It is also obvious from Fig. 2 that in accordance with a *meta*-orienting effect of the carbomethoxyl group 3 octahedral orbitals of the Cr atom (collinear with Cr—CO bonds) are directed towards the atoms C(3), C(5) and C(7) of the benzene ring.

The average Cr—C(arene) distance 2.198(4) Å is the same as found in chromium tricarbonyl complexes of benzene (2.22 Å) [5], anizole (2.23 Å) [6], methyl benzoate (2.22 Å) [7] and other arene ligands.

The methyl benzoate ligand is almost planar (the dihedral angle between the benzene ring and the planes of the carbomethoxyl groups is 3.2°). Its bond lengths and angles are in good agreement with those found in the structure of $(\eta^6 - C_6 H_5 COOMe)Cr(CO)_3$ [7].

Comparison of Cr—CO bond lengths in octahedral complexes shows their pronounced sensitivity to trans-ligands. Some geometrical parameters of a series of such complexes are given in Table 3. In Cr(CO)₆ all Cr—CO distances are equal [8], and substitution of one or more CO groups by weaker π -acceptors L gives rise both to a general shortening of Cr—CO bonds and to the more essential contraction of those bonds which are trans to ligands L. In I the average Cr—CO distance 1.823(3) Å is shorter than in complexes with phosphine (or phosphite) ligands in trans-positions to CO groups (with the exception of the

ATOMIC	COORDINATES AF	VD ISOTROPIC TEN	APERATURE FACTO	ORS OF HYD	ROGEN ATOMS			
Atom	भ	X	2	Atom	×	v	2	β _j (Λ ²)
5	0.45318(5)	0.32330(3)	0.03614(4)	C(22)	0.63801 (34)	0.48946(18)	0.30459(26)	
Ъ	0.56626(7)	0.36338(4)	0.19143(6)	C(23)	0.52397 (30)	0.28076(16)	0.28948(23)	
0(1)	0.35286(24)	0.46662(13)	0.04425(19)	C(24)	0.45446(35)	0.20691(18)	0.26449(27)	
0(2)	0.18759(24)	0.24719(14)	0.14354(19)	C(25)	0.42227(42)	0,15197(20)	0.33771(33)	
0(3)	0.43618(42)	0.10467(17)	0.02771(34)	C(26)	0.45848(38)	0,16993(22)	0.43635(31)	
0(4)	0.65150(35)	0.17221(20)	0.07226(30)	C(27)	0.52749(37)	0.24283(22)	0.46272(26)	
C(1)	0.39641(31)	0.40563(17)	0.04305(24)	C(28)	0.55945(34)	0.29829(19)	0.38985(25)	
C(2)	0.29260(32)	0.27670(17)	0.10252(23)	H(4)	0.7202(31)	0.2989(16)	0.0075(23)	1.1(6)
C(3)	0.52274(35)	0.23105(18)	-0.02152(26)	H(5)	0,7039(40)	0.4084(22)	-0.0767(30)	4,1(9)
C(4)	0.63461(34)	0.29724(19)	-0.02474(24)	H(6)	0.4987(46)	0.3982(24)	-0.1493(33)	5,8(1.1)
C(5)	0.62602(39)	0.36087(20)	-0.07456(27)	H(7)	0.3057(46)	0.2903(23)	-0.1488(33)	4,8(1.1)
C(6)	0.49996(51)	0.35746(26)	-0.12020(27)	H(8)	0.3243(39)	0.1859(21)	-0.0649(29)	3.4(8)
C(7)	0.38853(47)	0.29222(29)	-0.11948(30)	H(12)	0.7803(30)	0.2899(16)	0.2702(23)	1.2(6)
C(8)	0.39634(39)	0.22949(23)	-0.06771(30)	H(13)	1.0199(39)	0.3380(20)	0.2542(29)	3.6(8)
C(9)	0.53195(52)	0.16269(24)	0.02779(38)	H(14)	1.1479(31)	0.4517(17)	0.1720(24)	1.7(6)
C(10)	0.65286(101)	0.10127(53)	0.12368(78)	H(16)	1.0164(35)	0.5188(19)	0.0954(26)	2.4(7)
C(11)	0.75639(29)	0.38198(16)	0.18855(22)	H(16)	0.7754(32)	0.4783(17)	0.1024(25)	2.2(7)
C(12)	0.83172(33)	0.34092(19)	0.23374(26)	H(18)	0.3241(28)	0.3832(15)	0.2644(22)	0,5(6)
C(13)	0.97 \$64(36)	0.36548(23)	0.22647(28)	(61)H	0.2602(40)	0.4665(21)	0.3599(30)	4.0(9)
C(14)	1.04348(33)	0.43002(22)	0.17604(27)	H(20)	0.4459(40)	0.5753(22)	0.4206(31)	4.0(9)
C(15)	0.97101(34)	0.47065(19)	0.13048(25)	H(21)	0.6833(38)	0.5867(20)	0.3886(29)	3.7(9)
C(16)	0.82751(31)	0.44641(17)	0.13437(24)	H(22)	0.7429(31)	0.4917(17)	0.2910(24)	1.6(7)
C(17)	0.53506(30)	0.42920(16)	0.26401 (23)	H(24)	0.4153(39)	0.1953(20)	0.1906(29)	4.0(9)
C(18)	0.39814(33)	0.42358(18)	0.28556(25)	H(26)	0.3629(50)	0.0951(26)	0.3156(37)	6.2(1.3)
C(19)	0.36644(37)	0.47647(21)	0.34289(28)	H(26)	0.4292(33)	0.1259(18)	0.4876(25)	2.1(7)
C(20)	0.46959(41)	0.53725(20)	0.37943(28)	H(27)	0.5544(37)	0.2567(20)	0.5315(26)	3.0(8)
C(21)	0.60552(40)	0.54339(19)	0.36068(30)	H(28)	0.6067(30)	0.3484(16)	0.4126(23)	1.7(6)

TABLE 1

TABLE 2

Atom	10 ⁵ B ₁₁	10 ⁵ B ₂₂	10 ⁵ B ₃₃	10 ⁵ B ₁₂	. 10 ⁵ B ₁₃	10 ⁵ B ₂₃
Cr	746(6)	233(2)	397(3)	387(5)	59(7)	26(4)
Р	651(9)	196(3)	414(5)	292(8)	2(10)	22(6)
0(1)	1333(33)	332(9)	918(20)	733(29)	340(40)	265(21)
O(2)	1074(31)	484(10)	773(19)	282(29)	220(38)	292(23)
O(3)	3236(71)	356(12)	2098(45)	775(47)	2050(91)	108(37)
O(4)	2307(55)	747(16)	1728(36)	1854(52)	1216(72)	1026(41)
C(1)	779(38)	268(11)	525(23)	276(34)	82(45)	100(25)
C(2)	951(41)	273(12)	478(21)	426(35)	-152(47)	33(25)
C(3)	1168(47)	273(12)	622(24)	541(38)	335(53)	60(28)
C(4)	979(44)	386(14)	489(22)	542(39)	323(49)	89(28)
C(5)	1534(55)	394(14)	545(25)	640(46)	676(57)	68(31)
C(6)	2756(83)	639(20)	385(24)	1709(68)	355(70)	109(36)
C(7)	1959(67)	840(24)	548(27)	1676(69)	-750(67)	-536(42)
C(8)	1232(51)	507(17)	758(28)	544(48)	-15(61)	-681(37)
C(9)	2403(80)	427(17)	1185(43)	973(60)	1525(93)	60(43)
C(10)	5934(220)	1553(57)	3195(128)	5133(204)	3657(270)	2983(147)
C(11)	675(36)	241(10)	439(20)	328(31)	77(42)	3(24)
C(12)	1056(45)	368(13)	574(23)	676(40)	158(51)	193(29)
C(13)	1015(46)	636(19)	672(26)	1041(49)	-46(56)	259(37)
C(14)	791(44)	563(17)	541(24)	386(44)	117(49)	-47(32)
C(15)	1011(44)	342(13)	563(23)	296(38)	232(51)	12(29)
C(16)	793(39)	288(11)	520(22)	364(34)	-55(47)	-37(27)
C(17)	865(39)	233(10)	418(20)	360(33)	-83(43)	3(23)
C(18)	898(41)	317(12)	578(23)	420(37)	-179(49)	221(27)
C(19)	1227(49)	441(14)	667(26)	759(43)	-11(57)	327(32)
C(20)	1769(60)	376(14)	611(25)	915(48)	-9(62)	-261(32)
C(21)	1412(52)	314(13)	805(29)	279(42)	-69(61)	-309(32)
C(22)	995(44)	286(12)	666(25)	269(37)	-10(53)	-223(28)
C(23)	769(37)	238(10)	493(21)	377(32)	70(44)	69(24)
C(24)	1210(46)	268(12)	658(26)	488(38)	34(55)	185(29)
C(25)	1624(58)	302(13)	931(32)	414(45)	-112(70)	307(35)
C(26)	1281(51)	440(16)	841(29)	664(46)	304(60)	639(36)
C(27)	1150(49)	538(17)	518(25)	738(47)	195(52)	296(32)
C(28)	1110(45)	328(13)	487(23)	379(39)	60(50)	58(27)

ANISOTROPIC TEMPERATURE FACTORS

 β -isomer of Cr(CO)₅ [Ph₂PCH₂CH₂P(Ph)CH₂CH₂PPh₂]Mn(CO)₃Br [9]).

It is to be noted that the Cr-P bond in I is the shortest [2.337(1) Å] of all found in chromium complexes with phosphine ligands, where these bonds are 2.360-2.422 Å in length. This fact is explained naturally by the different character of ligands *trans* to a phosphorus atom: in I this is methyl benzoate, in all other complexes mentioned a carbonyl group. All the same the Cr-PPh₃ bond in I is somewhat longer than the Cr-P(OPh)₃ bond in Cr(CO)₅P(OPh)₃ (2.309 Å [11]). A contraction of the latter is specific for all phosphite complexes of transition metals and is due to the presence of more electronegative substituents at phosphorus because such groups facilitate back-donation M-P.

The configuration of the PPh₃ ligand is usual. The Cr-P-C bond angles are increased to $117.0(1)^{\circ}$, the C-P-C angles are decreased to $101.0(1)^{\circ}$ in comparison with ideal tetrahedral values. The average bond lengths are P-C 1.836(3), C-C 1.382(5) Å. Planar phenyl rings make dihedral angles 96, 84 and 78° with each other.

Analysis of intramolecular non-bonded distances does not reveal any short

Fig. 1. A perspective view of the molecule with the main bond lengths and angles.

TABLE 3

BOND LENGTHS IN CHROMIUM CARBONYL PHOSPHINE COMPLEXES

Complex	cis-Cr—CO (Å)	trans-Cr—CO (Å)	Cr—P (Å)	Ref.
G-/CD)-	1.909			8
$C_{\rm r}(CO)_{\rm 6}$	1.880	1.844	2.422	10
$Cr(CO)$ = $P(OPh_1)$	1.896	1.861	2.309	10
$CI(CO)SI(CII_3)_3$	1.84	1.77	2.376	9
β -Cr(CO) ₅ [Ph ₂ PCH ₂ CH ₂ (Ph)] Ch ₂ Ch ₂ (Ph) Ch ₂ CH ₂ (Ph) β		1,827 ^a	2.381	11
CI(CO)3[Pfi2PCH2CH2CH2N(C2H5)CH2CH2CH21		1.804 ^b		
C.(00) (0 H-COOCH-)		1.85	_	7
$Cr(CO)_3(C_6R_5COOCH_3)$		1.823	2.337	
Gr(CO) ₂ PPn ₃ (C6n ₅ COCn ₃) Gr(CO) ₄ (Ph ₂ PCH ₂ CH ₂ PPh ₂)	1.884	1.831	2.360	12

a trans to P. b trans to N.

Fig. 2. A projection of the molecule on the plane of the coordinated benzene ring showing an eclipsed conformation.

contacts between the carbomethoxyl group and the phosphine ligand: the shortest P…C, P…O, C…O an⁻¹ C…C distances are even greater than corresponding Van der Waals radii sums. Thus the molecular structure of I does not contain any unusual features and there are no conformational reasons for its anomalous behaviour in the IHE reaction.

References

- 1 V.N. Setkina, V.I. Zdanovich, N.K. Baranetzkaya, A.I. Yurtanov, K.N. Anisimov and D.N. Kursanov, Zh. Obshch. Khim., 41 (1971) 1338.
- 2 D.N. Kursanov, V.N. Setkina, N.K. Baranetzkaya, E.I. Phedin, E.N. Mysov and K.N. Anisimov, Dokl. Akad. Nauk SSSR, 202 (1972) 601.
- 3 H.C. Watson, D.M. Shotton, J.M. Cox and H. Muirhead, Nature, 225 (1970) 806.
- 4 B.P. Biryukov and Yu.T. Struchkov, in Crystal Chemistry, 1969, VINITI, Moscow, 1971, pp. 148-216.
- 5 M.F. Baily and L.F. Dahl, Inorg. Chem., 4 (1965) 1314.
- 6 O.L. Carter, A.T. McPhail and G.A. Sim, J. Chem. Soc. A, (1966) 822.
- 7 O.L. Carter, A.T. McPhail and G.A. Sim, J. Chem. Soc. A, (1967) 1619.
- 8 A. Whitaker and J.W. Jeffery, Acta Crystallogr., 23 (1967) 977.
- 9 P.H. Bird, N.J. Coville, I.S. Butler and M.L. Schneider, Inorg. Chem., 12 (1973) 2902.
- 10 H.J. Plastas, J.M. Stewart and S.O. Grim, J. Amer. Chem. Soc., 91 (1969) 4326.
- 11 F.A. Cotton and M.D. LaPrade, J. Amer. Chem. Soc., 91 (1969) 7000.
- 12 M.J. Bennett, F.A. Cotton and M.D. LaPrade, Acta Crystallogr., Sect. B, 27 (1971) 1899.